Những câu hỏi liên quan
Trần Anh Thơ
Xem chi tiết
Trần Quốc Khanh
3 tháng 4 2020 lúc 20:22

Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:

\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)

\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)

\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)

Cộng (1),(2) và (3) có:

\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)

\(\Rightarrow2VP\ge2VT\)

\(\RightarrowĐPCM\)

Bình luận (0)
 Khách vãng lai đã xóa
Vo Trong Duy
Xem chi tiết
Kiệt Nguyễn
12 tháng 6 2020 lúc 13:53

Theo BĐT Bunyakovsky, ta có: \(\frac{7}{2a+b+c}=\frac{7^2}{7\left(2a+b+c\right)}=\frac{\left(2+1+4\right)^2}{2\left(a+3b\right)+\left(b+3c\right)+4\left(c+3a\right)}\)

\(\le\frac{2^2}{2\left(a+3b\right)}+\frac{1^2}{\left(b+3c\right)}+\frac{4^2}{4\left(c+3a\right)}\)

\(=\frac{2}{a+3b}+\frac{1}{b+3c}+\frac{4}{c+3a}\)(1)

Hoàn toàn tương tự: \(\frac{7}{2b+c+a}\le\frac{2}{b+3c}+\frac{1}{c+3a}+\frac{4}{a+3b}\)(2); \(\frac{7}{2c+a+b}\le\frac{2}{c+3a}+\frac{1}{a+3b}+\frac{4}{b+3c}\)(3)

Cộng theo từng vế của 3 BĐT (1), (2), (3), ta được:

\(7\left(\frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\right)\le7\left(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\right)\)

hay \(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\left(q.e.d\right)\)

Đẳng thức xảy ra khi a = b = c

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Anh Quân
3 tháng 12 2017 lúc 20:52

Áp dụng bđt 1/a+1/b >= 4/a+b

Xét 1/a+3b + 1/b+2c+a >= 4/2a+4b+2c = 2/a+2b+c

Tương tự : 1/b+3c + 1/c+2a+b >= 4/2a+2b+4c = 2/a+b+2c

1/c+3a + 1/a+2b+c >= 4/4a+2b+2c = 2/2a+b+c

=> VT + VP >= 2VP

=> VT >= VP ( ĐPCM)

k mk nha

Bình luận (0)
tth_new
13 tháng 6 2020 lúc 20:33

Chuyển vế và quy đồng, nó tương đương:

sigma(((754*a + 17*c)*(a + b - 2*c)^4)/1053 + ((416*a^2*b + 367*c^3)*(a - b)^2)/13 + (64*a^2*c*(a + b - 2*c)^2)/3 + (49*c*(a + b - c)^2*(a + b - 2*c)^2)/39) >=0

\(\Sigma\frac{\left(754a+17c\right)\left(a+b-2c\right)^4}{1053}+\Sigma\frac{\left(416a^2b+367c^3\right)\left(a-b\right)^2}{13}+\Sigma\frac{64a^2c\left(a+b-2c\right)^2}{3}+\Sigma\frac{49c\left(a+b-c\right)^2\left(a+b-2c\right)^2}{39}\ge0\)

PS: Dò lại xem giữa cái đoạn công thức toán và đoạn text của mình có lỗi gì không nhé. Đoạn text chắc chắn đúng rồi nhưng đoạn thức toán mình đánh có thể có sai sót.

Bình luận (0)
 Khách vãng lai đã xóa
Cù Minh Duy
Xem chi tiết
FUCK
2 tháng 9 2018 lúc 14:24

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

Bình luận (0)
Hung Trinh Ngoc
Xem chi tiết
Thắng Nguyễn
29 tháng 9 2017 lúc 0:00

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:

\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{2}{a+b+2c};\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{2a+b+c}\)

Cộng theo vế 3 BĐT trên ta có: 

\(VT=\frac{1}{b+3c}+\frac{1}{c+3a}+\frac{1}{a+3b}\)

\(\ge\frac{1}{a+b+2c}+\frac{1}{2a+b+c}+\frac{1}{a+2b+c}=VP\)

Bình luận (0)
Hung Trinh Ngoc
29 tháng 9 2017 lúc 17:29

thanks

Bình luận (0)
Dưa Hấu
Xem chi tiết
Trần Đạt
Xem chi tiết
Akai Haruma
4 tháng 11 2017 lúc 23:13

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{c+a}\geq \frac{9}{b+c+c+a+c+a}=\frac{9}{3c+2a+b}\)

\(\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{a+b}\geq \frac{9}{a+c+a+b+a+b}=\frac{9}{3a+2b+c}\)

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{b+c}\geq \frac{9}{a+b+b+c+b+c}=\frac{9}{3b+2c+a}\)

Cộng theo vế rồi rút gọn ta thu được

\(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\geq 3\left(\frac{1}{3a+2b+c}+\frac{1}{3b+2c+a}+\frac{1}{3c+2a+b}\right)\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

Bình luận (0)
Trần Đạt
4 tháng 11 2017 lúc 22:41

@Ace Legona bác giúp em với

Bình luận (0)
Đạt Trần Tiến
Xem chi tiết
Lightning Farron
3 tháng 11 2017 lúc 22:12

Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ta có:

\(\dfrac{1}{a+3b}+\dfrac{1}{a+b+2c}\ge\dfrac{4}{2a+4b+2c}=\dfrac{2}{a+2b+c}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{1}{b+3c}+\dfrac{1}{2a+b+c}\ge\dfrac{2}{a+b+2c};\dfrac{1}{c+3a}+\dfrac{1}{a+2b+c}\ge\dfrac{2}{2a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT=\dfrac{1}{b+3c}+\dfrac{1}{c+3a}+\dfrac{1}{a+3b}\)

\(\ge\dfrac{1}{a+b+2c}+\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}=VP\)

Bình luận (0)
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Trần Quốc Khanh
25 tháng 3 2020 lúc 15:55

Ta CM BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},a+b\ge2\sqrt{ab}\)( co si với a,b>0)

Suy ra \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\RightarrowĐPCM\)\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(1\right)\)

a/Áp dụng (1) có

\(\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\left(2\right)\).Tương tự ta cũng có:

\(\frac{1}{b+c+2a}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\left(3\right),\frac{1}{c+a+2b}\le\frac{1}{4}\left(\frac{1}{b+c}+\frac{1}{a+b}\right)\left(4\right)\)

Cộng (2),(3) và (4) có \(VT\le\frac{1}{4}.\left(6+6\right)=3\left(ĐPCM\right)\)

b/Áp dụng (1) có:

\(\frac{1}{3a+3b+2c}=\frac{1}{\left(a+b+2c\right)+2\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{2\left(a+b\right)}\right)\left(5\right)\)

Tương tự có: \(\frac{1}{3a+2b+3c}\le\frac{1}{4}\left(\frac{1}{a+c+2b}+\frac{1}{2\left(a+c\right)}\right)\left(6\right)\)

\(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{2a+b+c}+\frac{1}{2\left(b+c\right)}\right)\left(7\right)\)

Cộng (5),(6) và (7) có:

\(VT\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{a+c+2b}+\frac{1}{2a+b+c}+\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\right)\le\frac{1}{4}.9=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Tuyển Trần Thị
Xem chi tiết
Trần Hữu Ngọc Minh
8 tháng 11 2017 lúc 16:46

áp dụng  BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{a+3b+a+b+2c}=\frac{2}{a+2b+c}\)

\(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{2}{a+b+2c}\)

\(\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{2a+b+c}\)

Cộng các BĐt trên theo vế ta được:

\(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\left(đpcm\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

Bình luận (0)
trần thành đạt
2 tháng 12 2017 lúc 21:55

giúp mình vs  CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2

Bình luận (0)
Đinh Hoàng Gia Bảo
27 tháng 3 2020 lúc 13:58

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

Bình luận (0)
 Khách vãng lai đã xóa